Modelos Productivos de Agricultura Protegida desde la Agricultura Familiar
Resumen
La fragilidad de las cadenas agroalimentarias industriales ha quedado más que evidenciada. Fenómenos como los desastres naturales, guerras, pandemias, entre otros eventos atípicos; han puesto de manifiesto que la cadena logística larga alimentaria carece de la capacidad de adaptarse ante estos fenómenos para abastecer de alimentos de sanos y frescos, en tiempo y forma. La humanidad se encuentra ante un constante cambio en las formas y modos, de consumo. Existe una transición hacia la preferencia de consumo de productos agrícolas orgánicos, libres de agentes químicos contaminantes y que sean producidos en concordancia con el medio. En tal sentido, este documento analiza y discute el sistema de producción Agrícola Protegida desarrollada desde la Agricultura Familiar, como esquema que permite desde sus características la producción y disponibilidad de frutas y verduras durante todo el año, para autoconsumo y/o comercialización. La Agricultura Protegida mediante los modelos: microtúnel, macrotúnel, mallas sombra, mallas antiinsectos, mallas antipájaros, e invernaderos; se presentan, como una estrategia novedosa que permite controlar parte de los factores climatológicos, minimizando los impactos que los cambios medioambientales tienen sobre los cultivos, así como plagas y enfermedades. Por lo que, son una alternativa que permite atender el abastecimiento de alimentos ante fenómenos atípicos, y en el contexto transformacional actual de la sociedad y de los modos de consumo.
Descargas
Citas
Aznar-Fernández, T., & Rubiales, D. (2018). Identification and characterisation of antixenosis and antibiosis to pea aphid (Acyrthosiphon pisum) in Pisum spp. germplasm. Annals of Applied Biology, 172(3), 268–281. https://doi.org/https://doi.org/10.1111/aab.12417
Bell, C. (2019). People of Future Agriculture; Trust and Succession in Family Businesses. International Journal of Agricultural Management, 8(3), 107–111. https://doi.org/10.5836/ijam/2019-08-107
Benedet, L., Brunetto, G., & Loss, A. (2020). Use of Swine Manure in Agriculture in Southern Brazil: Fertility or Potential Contamination? In G. W. Ferreira (Ed.), Soil Contamination (p. Ch. 5). IntechOpen. https://doi.org/10.5772/intechopen.94525
CEPAL. (2019). La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe. www.cepal.org/es/suscripciones
FAO. (2017). The future of food and agriculture – Trends and challenges.
FAO. (2021). Objetivo 2: Poner fin al hambre. Objetivos Del Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/hunger/
FAO, IFAD, UNICEF, WFP, & WHO. (2020). The State of Food Security and Nutrition in the World 2020: Transforming food systems for affordable healthy diets. In The State of Food Security and Nutrition in the World 2020. FAO, IFAD, UNICEF, WFP and WHO. https://doi.org/10.4060/ca9692en
Formisano, L., Ciriello, M., El-Nakhel, C., de Pascale, S., & Rouphael, Y. (2021). Dataset on the Effects of Anti-Insect Nets of Different Porosity on Mineral and Organic Acids Profile of Cucurbita pepo L. Fruits and Leaves. Data, 6(5). https://doi.org/10.3390/data6050050
Formisano, L., Pannico, A., El-Nakhel, C., Starace, G., Poledica, M., Pascale, S. de, & Rouphael, Y. (2020). Improved Porosity of Insect Proof Screens Enhances Quality Aspects of Zucchini Squash without Compromising the Yield. Plants, 9(10). https://doi.org/10.3390/plants9101264
Ghani, S., Bakochristou, F., ElBialy, E. M. A. A., Gamaledin, S. M. A., Rashwan, M. M., Abdelhalim, A. M., & Ismail, S. M. (2019). Design challenges of agricultural greenhouses in hot and arid environments – A review. Engineering in Agriculture, Environment and Food, 12(1), 48–70. https://doi.org/10.1016/J.EAEF.2018.09.004
Giannoulis, A., Briassoulis, D., Papardaki, N.-G., & Mistriotis, A. (2021). Evaluation of insect-proof agricultural nets with enhanced functionality. Biosystems Engineering, 208, 98–112. https://doi.org/10.1016/j.biosystemseng.2021.05.012
Hadavi, E., & Ghazijahani, N. (2018). Closed and Semi-closed Systems in Agriculture. In E. Lichtfouse (Ed.), Sustainable Agriculture Reviews 33: Climate Impact on Agriculture (pp. 295–310). Springer International Publishing. https://doi.org/10.1007/978-3-319-99076-7_10
Hirzel, J., Moya-Elizondo, E., Hernández, M., Guzmán, P., & González, D. (2020). Effect of shade cloth on the evolution of nutrient concentrations in apple tree leaves. Scientia Horticulturae, 266, 109288. https://doi.org/10.1016/j.scienta.2020.109288
Jiang, S., Zhang, H., Cong, W., Zhengyuan, L., Ren, Q., Wang, C., Zhang, F., & Jiao, X. (2020). Multi-Objective Optimization of Smallholder Apple Production: Lessons from the Bohai Bay Region. Sustainability, 12, 6496. https://doi.org/10.3390/su12166496
Kumar, P., Gorantiwar, S., More, S. M., Singh, A., & Roy, P. (2021). Trends in Hi-Tech Agriculture Sector (pp. 511–527). https://doi.org/10.1201/9781003245384-30
Laur, S., da Silva, A. L. B. R., Díaz-Pérez, J. C., & Coolong, T. (2021). Impact of Shade and Fogging on High Tunnel Production and Mineral Content of Organically Grown Lettuce, Basil, and Arugula in Georgia. Agriculture, 11(7). https://doi.org/10.3390/agriculture11070625
Marcelino, R., Casagrande, L. C., Cunha, R., Crotti, Y., & Gruber, V. (2018). Internet of Things Applied to Precision Agriculture. In M. E. Auer & D. G. Zutin (Eds.), Online Engineering & Internet of Things (pp. 499–509). Springer International Publishing.
Martínez-Espinosa, R. M. (2021). Controversy over the Use of “Shade Covers” to Avoid Water Evaporation in Water Reservoirs. Sustainability, 13(20). https://doi.org/10.3390/su132011234
McCartney, L., & Lefsrud, M. (2018). Protected Agriculture in Extreme Environments: A Review of Controlled Environment Agriculture in Tropical, Arid, Polar, and Urban Locations. Applied Engineering in Agriculture, 34(2), 455–473. https://doi.org/https://doi.org/10.13031/aea.12590
Rathee, M., Dalal, P. K., & Mehra, S. (2018). Effect of alternating temperatures on survivorship and demographic parameters of tomato fed Helicoverpa armigera View project Mathematical models in apiculture and beekeeping View project. https://www.researchgate.net/publication/324000192
Reséndez, A. M., Córtes, D. M., Carrillo, J. L. R., García, V. J. B., Aragón, M. G. R., Rangel, P. P., & Marszalek, J. E. (2020). Nutraceutical quality of Opuntia ficus-indica developed under micro tunnel conditions, applying vermicompost. Emirates Journal of Food and Agriculture, 32(12). https://doi.org/https://doi.org/10.9755/ejfa.2020.v32.i12.2221
UN. (2022). Goal 2: Zero Hunger. Sustainable Development Goals. https://www.un.org/sustainabledevelopment/hunger/
Vargas-Canales, J. M., Palacios-Rangel, M. I., García-Cruz, J. C., Camacho-Vera, J. H., Sánchez-Torres, Y., & Simón-Calderón, C. (2022). Analysis of the impact of the regional innovation system of protected agriculture in Hidalgo, Mexico. The Journal of Agricultural Education and Extension, 1–26. https://doi.org/10.1080/1389224X.2022.2039246
Willden, S. A., Ugine, T. A., & Loeb, G. M. (2022). The effect of UVB-blocking plastics on the efficacy of Beauveria bassiana and a conventional product against Lygus lineolaris on low tunnel strawberry. Pest Management Science, 78(10), 4268–4277. https://doi.org/https://doi.org/10.1002/ps.7046
Willden, S., Cox, K., Pritts, M., & Loeb, G. (2021). A comparison of weed, pathogen and insect pests between low tunnel and open-field grown strawberries in New York. Crop Protection, 139, 105388. https://doi.org/10.1016/j.cropro.2020.105388
Xie, X., Zhao, F., Zheng, Y., Sang, L., Zhang, P., Jiang, J., & Cao, G. (2020). Identification of Tolerance of Wheat (Triticum Aestivum L.) With Different Ploidy under Salt Stress. IOP Conference Series: Earth and Environmental Science, 598(1), 012074. https://doi.org/10.1088/1755-1315/598/1/012074
Zhou, W., Niu, Y., Wang, C., Yang, Y., Tan, Z., Yi, Y., Yu, W., & Wang, H. (2018). A Biodegradable Ramie Fiber-Based Nonwoven Film Used for Increasing Oxygen Supply to Cultivated Soil. Applied Sciences, 8(10). https://doi.org/10.3390/app8101813